KeyCoNet (2012 – 2014) is a European policy network focused on identifying and analyzing initiatives on the implementation of key competences in primary and secondary school education.

On the basis of the evidence collected through literature reviews, case studies, peer learning visits, country overviews, videos and exchanges between network members, the project’s final objective is to produce recommendations for policy and practice regarding the enablers and obstacles to a holistic implementation of key competence development.

Among KeyCoNet’s current 18 partners in 10 countries (Austria, Belgium, Estonia, Finland, France, Ireland, Norway, Portugal, Spain and Sweden), are Ministries of Education/related agencies, universities/research institutes, European organizations, and practice related partners. KeyCoNet also has a growing number of associate members from other countries and stakeholder groups, steadily increasing our network’s scope and influence.
ABOUT THIS CASE STUDY

Part of a series
This case study is part of a series of case studies being produced by KeyCoNet, to highlight various initiatives concerning key competence development, taking place across Europe. Each case study analyzes the initiative’s implementation strategies in depth, and will feed into the network’s recommendations for policy and practice on how to implement a key competence approach in schools most effectively.

How and why was this case selected?
Each year the KeyCoNet network identifies initiatives concerning key competence development across Europe, and a case note is produced providing basic information about each one. Following this, network partners participate in an online selection according to pre-established criteria, as well as an in-depth face-to-face discussion, in order to select the most interesting initiatives to develop into case studies.

The Polish initiative, Students’ Academy, involves more than 40,000 students and 1500 teachers in Poland in a project which promotes classroom and extra-curricular activities related mainly to the development of mathematical and scientific competences. The network identified this initiative as a particularly interesting one because of its holistic approach to key competence development, as it targets the curriculum, learning resources, and teacher training. Teachers who join the programme can benefit from e-learning courses that cover pedagogical methods that are conducive to key competence development, including project-based learning management, and harnessing the role of feedback in the learning process.

Which methodology has been used?
Case studies are the main tool used by the network to probe beneath the surface of each selected initiative and provide a rich context for understanding the implementation issues involved. The initiatives selected by the network differ in many ways, according to the nature of the key competences addressed, the implementation process used, the number of students and teachers directly concerned, the type and number of actors involved, and the duration and stage of development etc. A multiple-case study design, whereby each initiative generates its own case study, but uses one single prism for a common analysis, was therefore chosen. This method makes it possible to explore diversity, as well as the enablers and obstacles to the initiative’s implementation, as perceived by the initiators and stakeholders interviewed. Moreover, through a multiple-case study design it is possible to identify choices, strategies, characteristics, situations or contexts leading to success or failure in a recurrent manner. This will particularly contribute to fuelling the set of recommendations for policy and practice at institutional, local, regional, national and European level, for the effective implementation of key competences in school education.

Each case study included interviews with the initiative’s coordinators and stakeholders, as well as desk research. In some cases, where considered feasible and fruitful, focus groups were also organized. The development of the case study started with desk research (documents and internet). Subsequently, face-to-face interviews with the President of the Centre and the project coordinator were conducted. The interviews were followed by exchanges of e-mails aimed at obtaining additional information and clarifications. Two teachers/school project coordinators have been interviewed by telephone and Skype. Three other teacher-coordinators sent written replies to the questions which had been enclosed to the invitation for the interview. The teachers interviewed were selected following the advice of the project coordinator. They represented schools from big cities as well as schools from villages from different parts of the country (excluding Warsaw). Some useful information on project implementation was obtained from the desk officer form the agency responsible for the implementation of the European Social Fund in Education in Poland.
<table>
<thead>
<tr>
<th>Country:</th>
<th>Poland</th>
</tr>
</thead>
</table>
| Title of initiative: | [PL] Akademia uczniowska
 | [EN] Students’ Academy |
| Coordinator/ Organization: | Centrum Edukacji Obywatelskiej (Centre for Citizenship Education) |
| Key competences addressed: | [PL] Matematyka, nauki przyrodnicze; [EN] Math and science
 | [PL] Technologie informatyczne i telekomunikacyjne (TIK); [EN] Information and communication technologies (ICT) |
| | [PL] Współpraca zespołowa; [EN] Teamwork |
| | [PL] Rozwiązywanie problemów; [EN] Problem solving |
| Type of initiative and channels used for implementation (e.g. curriculum reform introduced through legislation etc.): | Following the introduction of the new national core curriculum the project aims to improve the development of achievement standards, teaching programmes and additional modules for optional extra-curricular activities. |
| Partners: | Międzynarodowy Instytut Biologii Molekularnej i Komórkowej (International Institute for Molecular and Cell Biology) |
| | Polsko-Amerykańska Fundacja Wolności (Polish-American Freedom Foundation) |
| Scope: | School National |
| Learning context: | Formal |
| School education level(s): | Lower secondary (ISCED 2) (primary, lower secondary, upper secondary) |
| Target groups: | Students aged 13-16 and teachers |
| Time frame: | From 1 October 2009 to 31 August 2014 |
| Relevant links: | - Students Academy: www.ceo.org.pl/pl/au |
| | - Polish-American Freedom Foundation: www.pafw.pl/programy/program/198 |
SUMMARY

The Students’ Academy program (Akademia uczniowska) is conducted by the Centre for Citizenship Education (Centrum Edukacji Obywatelskiej) in collaboration with the International Institute of Molecular and Cell Biology (Międzynarodowy Instytut Biologii Molekularnej i Komórkowej) and the Polish-American Freedom Foundation (Polsko-Amerykańska Fundacja Wolności), with support from the European Union through the European Social Fund.

In the classroom as well as during extra-circular activities known as School Science Clubs (Szkolne Koła Naukowe), lower secondary school students (gimnazja ISCED 2) perform experiments and conduct projects (projekty gimnazjalne) in math and natural sciences, which include elements such as peer teaching projects. More than 300 high schools from 5 Polish provinces have participated in the project. Teachers who join the programme can benefit from e-learning courses that cover experiment preparation and implementation, project-based learning management, methods to increase student motivation and the role of feedback in the learning process.

INTRODUCTION

The goal of the Students’ Academy (Akademia uczniowska) project is to find a practical response to the question of how to teach young people about scientific inquiry. More than 40,000 students and 1,500 teachers from 300 lower secondary schools (gimnazjum) are involved. The project encourages teachers to search independently for new solutions, to try these solutions out in practice, and to share the experience gained. At the same time it provides teachers with support through training, on-line courses and counselling from experienced consultants.

The principle adopted by the project is that it should include all students, not just students who are selected, especially gifted or interested by the subject matter.

The project was launched in 2009 and it will last until 2015; it is financed by the European Social Fund.
1. CONTEXTUAL INFLUENCE

Which contextual factors have been perceived as enablers to the implementation of the initiative, and why?

There were three crucial factors that enabled the launch and implementation of the Students’ Academy:

- The reform of the national core curriculum,
- The availability of funds for the support of the reform implementation,
- The expertise (based on experience) of the Centre for Citizenship Education.

Curricular Reform in Polish Schools

In 2008 the Ministry of National Education introduced the new Core Curriculum of General Education, i.e. the framework guidelines for the taught content and outcomes of learning that should be achieved at successive stages of school education, from pre-primary to the end of secondary, as tested in the matriculation exam.

At the same time greater importance was put on science (biology, chemistry and physics) and mathematics, and the approach to the teaching of these subjects changed. This new focus was due to the fact that the results of the PISA study had demonstrated that Polish students were not sufficiently able to manage tasks that required scientific reasoning (identifying the problem, formulating hypotheses, finding arguments, drawing conclusions). Many teachers and experts had complained that the practice prevailing in Polish schools provided too few opportunities to use such reasoning, because hands-on experiences were too infrequent.

Policy makers and experts were not ignorant of the fact that defining only general educational goals would be insufficient to modify school practices and to achieve a real change in students’ attitude, knowledge and skills. That would require developing and implementing new teaching programmes and methods and learning tools, as well as a change in teachers’ attitudes.

With this in mind, the Ministry allotted significant funds from the European Social Fund to competitions aimed at the development of key competences, especially in mathematics, science, foreign languages and IT.

Experience and expertise of the Centre for Citizenship Education

The Centre for Citizenship Education (Centrum Edukacji Obywatelskiej – CEO) is an independent educational NGO that has been active in Poland since 1994. The CEO conducts numerous programmes, all of which share one common denominator: the aim to improve the quality of schools work and to develop schools as learning organisations.
The list of current projects from CEO website illustrates the broad scope of the institution’s activities.

One particularly important project is **School with Class** (Szkoła z klasą), which was launched in 2002, and its successor **School with Class 2.0** (Szkoła z klasą 2.0). The idea behind the programme is well summarised by the following passage from the manifesto presentation by Jacek Strzemieczny (President of the CEO):

“a good school should prepare not so much for the exam as for life in the demanding world of the 21st century. It calls for momentum, imagination and hard work. The school must itself be learning.”

To be awarded the title of ‘School with Class’, schools had to meet the following six principles on a daily basis:

1. The school teaches each of its students well.
2. The school judges fairly.
3. The school teaches students to think and to understand the world.
4. The school develops students’ social engagement, teaches sensitivity.
5. The school helps students to become confident, and fosters a good climate.
6. The school prepare its students for the future.

Tasks were prepared for each principle and schools participating in the programme had to choose and fulfil six tasks; one for each principle. Upon completion of the six tasks, the school received the title ‘School with Class’.

The scale of impact of the project is shown by the fact that 20% of primary and as much as one-third of lower secondary schools in Poland became ‘Schools with Class’.

The programmes and projects of the CEO focus on the process of learning. In particular, the following tools, methods and pedagogical approaches supporting students’ effective learning are being developed:

- formative assessment
- peer learning
• inquiry-based learning
• project-based learning

Another project that must be mentioned here is the **School of Dreams** project, which was implemented in 2005 and 2006; this project distributed grants for development activities to almost 500 schools throughout Poland. It was one of the first large projects financed by the European Social Fund (ESF) in Poland.

The experience gathered by the CEO while implementing numerous projects, and especially the ESF-funded **School of Dreams** project, enabled the institution to develop a well-prepared grant proposal for the **Students’ Academy** project.

To sum up, it can be said that there were several factors involved in the creation of the **Students’ Academy** project:

• Introduction of curricular reform (aimed at the development of key competences, among other things);
• Observation that school practices based on lectures and textbook reading rather than hands-on experience by students do not favour the development of key competences;
• Availability of EU funds enabling the Ministry of Education to announce the competition for grants;
• Accomplishments by the CEO: tested and proven methods for introducing changes to schools, increasing involvement and individual activity of students and inspiring and introducing innovative ideas;
• CEO experience in implementing projects funded by the EU’s European Social Fund.

Which contextual factors have been perceived as obstacles to the implementation of the initiative, and why?

There were no major obstacles to the implementation of the initiative.

2. **SUBSTANCE RELATED ISSUES**

Which substance related issues have been the most difficult ones to fix when deciding on the content of the initiative, and why?

The project “Students’ Academy” was designed as a proposal in response to the call for proposals from the Ministry of National Education **Transregional programmes for developing students’ skills in key competences, with special consideration for science and mathematics, ICT, foreign languages and entrepreneurship.**
The subject scope of the **Students’ Academy** project was determined by the conditions of that competition. It was a challenge to design the project proposal in such a way that the evaluators would be certain that all requirements had been followed.

In particular, the following criteria for project selection were defined:

- Preference will be given to projects concerning the development of students’ key competences in one or several of the following areas: science and mathematics, information and communications technology (ICT), foreign languages, entrepreneurship;
- Preference will be given to projects to be implemented in cooperation with universities and/or research units on the creation of a school science movement as a form of identification of and support for development of talented students.

There was also another challenge, namely how to combine subject-based teaching practices with the development of cross-curricular key competences such as scientific reasoning, problem solving, and team work.

The project aims at introducing new elements from the core curriculum into school practices; these elements are based on key competences, primarily competences in science and technology, mathematical competence and learning to learn. The project focuses on biology, chemistry, physics, and mathematics.

“**During the implementation of this programme, we are trying to answer the question of how to teach young people about scientific inquiry. We are looking for effective methods and gathering experience, and, based upon this foundation, we develop materials for students and teachers.**”

As a strategy to promote cross-curricular competences, **School Science Clubs (Szkolne Koła Naukowe)** were set up in each participating school. In the School Science Clubs, students work in small groups with minimal intervention from teachers to:

- Formulate research questions
- Formulate hypotheses
- Plan and conduct experiments to verify hypotheses
- Deepen their comprehension of the key subject concepts
- Carry out peer learning
- Create educational games

The **Students’ Academy** is more than just classroom or lab activities; it is also important for students to go out of school, make observations, explore phenomena and use various sources of knowledge. The programme allows schools to finance educational trips further afield, e.g. to museums or nature reserves, and also in order to take part in university classes.
3. PARTNERSHIP RELATED ISSUES

Which key aspects should be taken into consideration when defining the partnership?

Completion of the project is dependent on the involvement of its partners. The project has different partners at different levels of management.

The partnership with the Ministry of National Education is crucial. This is not, admittedly, a formal partnership, because the Ministry acts through its subordinate institution (Ośrodek Rozwoju Edukacji – Centre for Education Development), which supervises the project implementation as an intermediate body. However, the guidelines, approach and solutions developed in the implementation process help the introduction of the Ministry’s new core curriculum and of the necessary changes in school practice.

The CEO has two other partners that are directly involved in the project implementation:

• The International Institute of Molecular and Cell Biology
• The Polish-American Freedom Foundation

Scientists working at the International Institute of Molecular and Cell Biology provide activities for the teacher training courses, propose sample experiments and problems to be solved, help to identify examples of good practice, and assess the work of students presented at Science Fairs.

The Students’ Academy online platform was partly funded by the Polish-American Freedom Foundation.

At school level support from parents is necessary for the Students’ Academy to function well. Parents have to give their consent in order for their children to participate in additional, extracurricular activities such as School Science Clubs (a formal requirement). But more importantly, (according to the information gathered from teachers) most of the students participating in the Science Clubs are keen and proud to present their achievements (successful experiments, developed posters, teaching aids) at school meetings with parents.

4. STRATEGY RELATED ISSUES

Which aspects of the strategy implemented for the initiative have proved to be particularly effective, and why?

School participation

All lower secondary schools (gimnazjum) in five provinces (selected according to Ministry of National Education guidelines) were invited to take part in the project. Upon signing up for the project, schools had to declare that students entering the school in the years 2009–2011 (the project was then extended for an additional year, permitting a further recruitment in 2012) would participate in the project throughout their time at the school. Moreover, schools had to nominate at least two teachers of science or mathematics who would implement the programme. Schools also made a commitment to provide classrooms for School Science Club activities and to organise trips.

1 http://www.iimeb.gov.pl/
2 http://www.en.pafw.pl/
In exchange, the CEO provided teachers with remuneration for conducting additional classes, access to online courses, individual mentorship, and participation in traditional courses (all expenses covered by the CEO). The CEO also financed the cost of educational trips related to the curriculum and provided every school with a kit for lab classes (microscope and set of chemistry experiments).

On being accepted into the project, the head teacher of the schools signed an agreement with the CEO, outlining the aforementioned terms.

There are over 37,000 students from 300 lower secondary schools (gimnazjum) involved in the project. Three successive classes of students will take part in the programme and will be engaged in its implementation throughout their three years of education in the gimnazjum.

Changing teachers’ practice

The Students’ Academy is based on the assumption that to introduce any change to schools it is necessary to have adequately prepared teaching staff; as such the online courses for teachers make up an important part of the project. It is anticipated that every teacher taking part in the project (about 1300 in whole) will attend the following two courses:

- **Experimenting and Peer Learning**
- **Educational Projects of the Students’ Academy**

These courses are offered entirely on a specially developed online platform that can provide interactive communication. Not only can participants receive their training materials and present their achievements, they can also share and exchange their experiences, comment on works of other teachers, ask questions, explain, and also communicate with their mentors. Every participant receives individual assistance (coaching) from a mentor, who is an experienced teacher trained beforehand by the CEO.

Every course lasts for 8 months (2 semesters), and teachers must take the courses in the following order: Experimenting and Peer Learning followed by Educational Projects of the Students’ Academy. These courses, and the individual module programmes of which they are composed, help to build teachers’ confidence, enabling them to gradually hand over more and more tasks and responsibilities to their students, something that is a prerequisite for engagement and effective learning.

In order to link the knowledge acquired through these courses to school practice, teachers supervise extracurricular activities – School Science Clubs – while still involved in the training process and apply the methods they have learned during their ‘normal’ classes.

All students are invited to take part in School Science Clubs, regardless of their talents or skills.

Only some students took part in the activities of the School Science Clubs; student participation was rotation-based (because in the three-year education cycle every student should participate in School Science Club activities). On principle the groups were rather small (12 to 15 students) and participants were further divided into task teams working separately on different issues. Both teachers and project coordinators admit that organising and coordinating the activity of teams within the club could sometimes be difficult. However, the skills acquired were both useful and actively used. One of the teachers said that when she wanted to discuss a new issue in the class, even if there were only a few students with
experience from a School Science Club, she could count on them to create job cards and to practically organise the class activity independently.

This exemplifies an important principle of the way in which the Students’ Academy works: methods and approaches experimented in the extra-curricular School Science Club activities are transferred to ‘normal’ classes. In this way, scientific research methods are disseminated and all students carry out (and not only watch) experiments and work in teams on their own projects. The online training course for teachers took place simultaneously with School Science Club activities. This resulted in an effective blending of training and practice and ensured that teachers did not learn the theoretical background without applying the acquired skills in practice, as teachers could immediately implement in class what they had learnt during the online course. At the same time, the interactive formula of the online courses allowed teachers to present their own ideas as well as examples of interesting activities.

The programme of courses is designed to lead teachers (and their students) through the successive ‘steps of initiation’:

- Experimenting – how to carry out experiments effectively and safely;
- Educational research projects;
- Projects concerning the key concepts of a given discipline;
- Learning process, goals, formative assessment.

The project’s website plays a key role; it is divided into the following two sections:

- A section only accessible to project participants (login required);
- A section that is open to the public.

The public section contains general information about the programme, news and the ‘Treasury’. The Treasury provides advice, activity scenarios and teaching materials, grouped into four sections:

- Experiments (biology, chemistry, mathematics, physics)
- Projects (biology, chemistry, mathematics, physics)
- Peer learning (biology, chemistry, mathematics, physics and ‘How Science Works’)
- Cross-curricular activities.

A Treasury web page with examples of cross-curricular activities can be seen below.
There are around 5000 visitors to this page every month, most of whom are not participants in the Students’ Academy.

Testimonies of teachers

“The idea of learning from each other is fantastic”

“One can see that when we do not study for grades, it raises both interest and enthusiasm.”

“Students learn self-assessment.”

“Students change their attitude towards school. Experiments are ‘cool’. So, being at school can be attractive.”

“We create situations where students have to think”

“A student had assumed that seeds would not sprout inside a fridge. When it turned out differently, she complained to her teacher: ‘The experiment failed’. After a while, she came to the conclusion it was only her hypothesis that had failed. So, finally, it was a success. And this is exactly what science is about!”

Which aspects of the strategy implemented for the initiative have proved to be most problematic, and why?

The implementation strategy has proven to be effective, as there were no significant problems with the implementation. However, as noted by the coordinators, teachers sometimes are reluctant to follow the sequence of the experiments proposed within the training programme on the on-line platform. If the experiments suggested in the course did not match the curriculum followed by the teachers, these tended to continue implementing their usual curriculum, putting off until ‘later’ the student experiments suggested in the course programme.

5. MAINSTREAMING RELATED ISSUES

If the key competence initiative aims/aimed at mainstreaming, what are/have been the major obstacles encountered to generalise it?

This project was never intended as a pilot project and many schools were involved in its implementation from the beginning. The CEO was able to take such an approach because it could rely on its rich experience accumulated over many years.

The project results and good practices are disseminated on the website and at science fairs, with public presentations of some of the most interesting achievements of the student teams.

There are also plans to hold conferences in order to disseminate the results of the project.
6. SYSTEMIC ASPECTS

To which extent has the initiative been designed as a systemic one from the starting point, i.e. introducing changes in several areas related to the student curriculum [such as teacher training, assessment, school organisation, etc.]?

The goal of the Students’ Academy is to support the systemic change introduced by the Ministry of National Education: the curricular reform and introduction of projects as an obligatory element of the curriculum for lower secondary schools (gimnazjum).3

The systemic approach de facto enabled the launch and implementation of the project, since developing key competences was a condition of the European Social Fund financial support.

What have been the enablers encountered during the implementation because of the systemic aspect of the initiative?

Teachers willingly took advantage of online courses because such courses targeted the implementation of the new core curriculum, which represented a certain challenge for many teachers. Teachers also thought highly of the training and counselling that was offered with regards to planning, preparing and implementing students’ projects (according to requirements set out by the Regulation of the Ministry of National Education).

What have been the obstacles and/or challenges encountered during the implementation because of the systemic aspect of the initiative?

As noted by the coordinators, if the experiments proposed by the online training course did not match the curriculum a teacher was currently following, the teachers tended to follow their usual curriculum, putting off until ‘later’ the student experiments suggested by the programme of the course.

The goals and general systemic approach, determined at the preparatory stage of the grant proposal, did not change during the process of the project implementation. It was the result of a well-prepared proposal based on many years of CEO experience.

A matter of no small importance is also the financing of the project by the ESF. The procedures related to this funding strongly stress the importance of a shrewd analysis and dependable expert assessment of proposals at the selection stage, and precise description of the tasks and products in the eventual grant agreement. Once the agreement has been signed, modifications to the proposal are limited to technical issues. Any change in goals is virtually impossible, as it could call into question the validity of the decision to grant financial support to the project, and thus the incurred expenditure could be deemed ineligible for funding.

3 Pursuant to the Regulation by the Ministry of National Education of 20 August 2010 on conditions and methods of assessing, classifying, and promoting students (in schools and in adult education), and on carrying out tests and examinations in public schools, students of lower secondary schools (gimnazjum) are obliged to take part in the implementation of a project, defined as planned student teamwork aimed at solving a particular problem using varied methods.
7. EVALUATION RELATED ISSUES

In case a simultaneous/real time evaluation process has been part of the initiative:

What have been the obstacles to implement it, and why?

The comprehensive evaluation of the project is currently being carried out, since the first students enrolled in the project have just completed the full three-year implementation cycle. Results of the evaluation will be known by autumn 2013.

The implementation of the project is constantly being monitored by the intermediate body of the Centre for Education Development (Ośrodek Rozwoju Edukacji), subordinate to the Ministry of National Education. This monitoring mainly looks at the implementation of the budget and action plan, both of which were approved along with the proposal.

Individual teacher-training courses are assessed by participants, but no comprehensive, overall assessment of teacher training has been developed based on this feedback.

The development of the competences of students participating in Students’ Academy activities is monitored by teachers. Teachers have tools at their disposal that allow them to measure the extent to which students are able to identify problems, hypotheses and proofs found in a text.

8. ACHIEVEMENT OF INITIATIVE’S AIMS

Have the original aims of the initiative been achieved?

Although the project is planned to run until 2015, it is already possible to say that it has been a success. This success is due in part to the experience of the CEO, which was able to propose solutions corresponding to the guidelines of the new Core Curriculum, while at the same time matching teachers’ needs. It must be remembered that the project is financially supported by the European Social Fund, and that the state government was able and willing to allocate funds (available since Poland’s accession to the EU) to projects such as the Students’ Academy by setting investment priorities.

Another important and decisive source of the success of the project was the adopted implementation strategy, which consisted of the simultaneous development of teachers’ competences and the introduction of new solutions to the teaching practices of participating schools. Moreover, these new solutions, tested and proven at the School Science Clubs, were also used in ‘normal’ classes. The project is therefore bringing about permanent changes to the organisation and teaching culture of schools.
9. NEXT STEPS

What is planned next for the initiative?

The time span designated for the project implementation will end in two years. However, the positive achievements will be felt in the long term and will continue to be used even after the project is completed.

Once convinced that scientific methods, projects, experiments and peer learning are much more effective than traditional lectures, teachers will certainly continue to use the new approach. This will affect not only the teachers who have participated in the project but also their colleagues who will have seen the positive impact of the project.

Schools will retain ready-to-use activity scenarios, teaching materials prepared by students (which are given special attention by teachers) and equipped labs.

The Students’ Academy is just one of the many projects that the CEO is currently running. Most of these projects are interconnected, with successive projects using the achievements and experience gained from those that came beforehand. They may also build on the experience of participating teachers who become trainers and mentors in new projects. It is expected that the Students’ Academy will follow a similar pattern.

The lasting resources from the project also include online materials: documentation of the most interesting activities (examples of good practice), instructions, scenarios, etc.

Finally, there will remain a social capital of sorts: a cooperative network of teachers who know each other and respect each other’s accomplishments, and who are linked and united by the conviction that student activity is a prerequisite and source of success, and not a source of trouble.
FIND OUT MORE INFORMATION ABOUT OUR NETWORK’S PARTNERS:

MINISTRIES OF EDUCATION / NATIONAL AGENCIES

bmukk
http://www.bmukk.gov.at

OKOV
http://www.onderwijsraad.be/wegwijzer/AKOVA

NCC
http://www.ncc.ie

HITSA
http://www.eitsa.ee/en

UNIVERSITIES AND RESEARCH INSTITUTES

ife
http://ife.ens-lyon.fr/ife

eisp
http://www.eisp.org

UNED
http://www.uned.es

Universidade de Minho
http://www.ie.uminho.pt/

CICERO LEARNING
http://www.cicero.fi

Dept of Education Research
http://www.uio.no/pfi/english

PRACTICE-RELATED PARTNERS

JA-GE
http://www.ja-ge.eu

REKTORSAKADEMIEN
http://www.rektorsakademien.se
European Schoolnet is the coordinator of the KeyCoNet Project.

European Schoolnet is the network of 30 European Ministries of Education, based in Brussels. As a not-for-profit organisation, we aim to bring innovation in teaching and learning to our key stakeholders: Ministries of Education, schools, teachers, researchers, and industry partners.

Since its founding in 1997, European Schoolnet has used its links with education ministries to help schools make effective use of educational technologies, equipping both teachers and pupils with the skills to achieve in the knowledge society.

In particular, European Schoolnet pledges to:

- Support schools in achieving effective use of ICT in teaching and learning
- Improve and raise the quality of education in Europe
- Promote the European dimension in education

The KeyCoNet project has been funded with support from the Lifelong Learning Programme of the European Commission. Responsibility for this publication lies solely with the author, and the Commission is not responsible for any use which may be made of the information contained therein.